If it's not what You are looking for type in the equation solver your own equation and let us solve it.
t^2-15t+48=0
a = 1; b = -15; c = +48;
Δ = b2-4ac
Δ = -152-4·1·48
Δ = 33
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-15)-\sqrt{33}}{2*1}=\frac{15-\sqrt{33}}{2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-15)+\sqrt{33}}{2*1}=\frac{15+\sqrt{33}}{2} $
| {x-8}/4=5 | | 6x-8-3x=28 | | 4t+14=16t/5+7 | | X+.2x=48 | | X-2/x+3=3/8 | | 81/ 3÷x=21 /3÷9.1 | | 81/3/x=21/3/9.1 | | 26=8(w-4) | | 3.5(2x-0.3)=3-(7-1.4x) | | 4=1.5*5+b | | 81 /3÷x=21/ 3÷9.1 | | -5+4x=2x+3 | | y/3+12=4 | | -2(x+6)=-70(N) | | -2(x+6)=-70 | | 2xx2x=64 | | 4.5=x+2.8 | | 3/7=z/z+16 | | 3-6x=7x-62 | | 5(n+3)+4n5(n+3)+4n= | | 6^-7y=7 | | 90-p=105 | | 5x-7=3x-29 | | 4x-28x+4=5x-11 | | -6y+6+2y=-3y-12 | | -y=1+0 | | 7x+24=-2(x-3) | | -y=0+0 | | 9b=3-9b | | -3y=-(-1)-6 | | (6)x/12=2x(3) | | -3y=-0-6 |